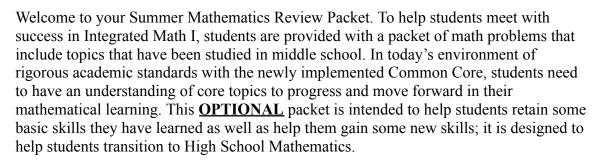
Mathematics Summer Review Packet

(Optional)
For ALL Students Entering Integrated Math I CP
Fall 2023

Medford Public Schools

Department of Mathematics

Medford Public Schools


489 Winthrop Street, Medford, Massachusetts 02155

Faiza I Khan fkhan@medford.k12.ma.us

Director of Mathematics K - 12 781-393-2214

June 8th, 2023

If students need to review *how* to complete the work, there are excellent, easy-to-understand tutorials online. Most of the tutorials are under 10 minutes long. The references to different sites are given as one progresses through the packet. The site www.khanacademy.org is very popular with many topics. It can be scrolled down and clicked on **OR** can be searched using the box "search for video or topic." Enter the topic students are working on for the day, and they will get a list of video tutorials. Watch as many as students need to help them complete the packet problems. There is also an opportunity to ask questions and get some online feedback. Students will find useful information there if time is taken to read the information.

The packet has nine sections. It is suggested that students work on the packet at least one section per week throughout the summer. At this rate, the packet will be completed in time for the start of school.

All work (all steps to each problem, including Calculator work) should be neatly shown on the packet or on a separate sheet of paper to be turned in with the packet. If work is done on separate paper, students should label their work and include the section and the problem number.

Good luck as you transition to high school.

Sincerely,

Faiza Khan
Director of Mathematics
Medford Public Schools

Name:			

Order of Operations

Need a refresher? Order of Operations Video:

https://www.khanacademy.org/math/arithmetic/order-of-operations/order_of_operations/v/order-of-operations

PEMDAS

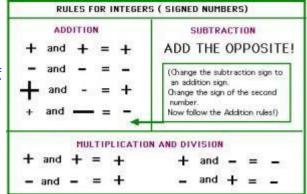
Part 1: Determine which step to perform first. The first example has been done for you.

a) $14 + 7.40 \div 8 - 7$	b) 50 ÷ 5 + (7 · 2) · 9 + 4	c) (11 - 5) · 2 + 7 + 36 - 9
7 · 40 because it is the first multiplication when reading left to right.		
d) $6^2 - 20 \div (2^3 - 3) + 1$	e) $4^2 - 5 \div 12$	f) 4 - 6 + 2·5

Part 2: Simplify each expression. The first problem has been done for you.

$(34 - 4) \div 3 - 6^{2}$ $30 \div 3 - 6^{2}$ $30 \div 3 - 36$ $10 - 36$ 26	g) $(2 + 2)^2 + (12 \div 6)$	h) $(96 - 6^2) \div (9 + 6)$
i) $17 - (19 - 3^2)^2 \div 4$	j) 12 − − 3 − 5 · − 2	k) $5 \cdot (3^2 - 7)$
I) $(2 \cdot 6 - 8^2) - 10$ Order of Operations Extra Practice:	m) $(65 - 5^2) \div (15 + 5)$	n) $4 \cdot (12 + 4) + 5^2$

Order of Operations Extra Practice:


https://www.khanacademy.org/math/arithmetic/order-of-operations/order of operations/e/order of operations 2 https://www.khanacademy.org/math/arithmetic/order-of-operations/order of operations/e/order of operations https://www.khanacademy.org/math/arithmetic/order-of-operations/order of operations/e/order of operations

Part 3: Operations with Integers - Simplify the following expressions. Use the number line if needed. The first

problem has been done for you.

Operations with Integers Extra Practice:

http://cdn.kutasoftware.com/Worksheets/PreAlg/Dividing%20Integers.pdf http://cdn.kutasoftware.com/Worksheets/PreAlg/Multiplying%20Integers.pdf http://cdn.kutasoftware.com/Worksheets/PreAlg/Dividing%20Integers.pdf

a) $8 + (-6) = 2$	b) $-45 \div (-9) = 5$	c) $(-11) - (-8) =$
-20 -10 0 -10 20		-20 -10 0 10 20
a Start		Serring
d) 12 + (-6) =	e) 14 – (–1) =	f) $(-5) + (-14) =$
		100 m
-20 -10 0 10 20	-20 -10 0 10 20	-20 -10 0 10 20
g) 1 – 8 =	h) -8 - 6 =	i) $-9 + 7 =$
-20 -10 0 10 20	-20 -10 0 10 20	-20 -10 0 10 20
j) -4 - 14 =	k) -26 - 39 =	I) 677 − 798 =
-20 -10 0 10 20		
m) -4 - (-8) =	n) −6 ÷ 2 =	o) -5 × -8 =
p) -9 x 8 =	q) -9 x -1 =	r) 24÷ - 8 =
	1	

Part 4: Operations with Rational Numbers

Need a refresher? Operations with Rational Numbers Video:

https://www.khanacademy.org/math/arithmetic/fractions/fractions-unlik e-denom/v/adding-and-subtracting-fractions

https://www.khanacademy.org/math/arithmetic/fractions/multiplying_fractions/v/multiplying-negative-and-positive-fractions

https://www.khanacademy.org/math/arithmetic/fractions/div-fractions-fractions/v/conceptual-understanding-of-dividing-fractions-by-fractions

Extra Practice:

https://www.khanacademy.org/math/arithmetic/fractions/fractions-unlik e-denom/e/adding_and_subtracting_fractions

https://www.khanacademy.org/math/arithmetic/fractions/multiplying_fractions/e/multiplying_fractions

https://www.khanacademy.org/math/arithmetic/fractions/div-fractions-fractions/e/dividing_fractions_2

http://cdn.kutasoftware.com/Worksheets/PreAlg/Add%20and%20Subtracting%20Fractions%20and%20Mixed%20Numbers.pdf

http://cdn.kutasoftware.com/Worksheets/PreAlg/Multiplying%20and%20 Dividing%20Fractions%20and%20Mixed%20Numbers.pdf

ADDITION:

- FIND COMMON DENOMINATOR
 - a. Whatever you do to the bottom, you must do to the top!
- 2. ADD NUMERATORS
- SIMPLIFY

SUBTRACTION:

- 1. FIND COMMON DENOMINATOR
 - a. Whatever you do to the bottom, you must do to the top!
- 2. SUBTRACT NUMERATORS
- SIMPLIFY

MULTIPLICATION:

- 1. MULTIPLY NUMERATORS
- 2. MULTIPLY DENOMINATORS
- SIMPLIFY

DIVISION:

- 1. FLIP THE SECOND FRACTION
- 2. MULTIPLY (LOOK ABOVE FOR HELP)
- SIMPLIFY

a) $\frac{6}{7} + \frac{7}{21}$ $\frac{18}{21} + \frac{7}{21} = \frac{25}{21}$	b) $\frac{2}{3} - \frac{3}{10}$	c) $\frac{2}{3} + \frac{8}{42}$	d) $\frac{12}{14} - \frac{4}{8}$
e) $\frac{13}{54} - \frac{1}{9}$	f) $\frac{1}{4} + \frac{4}{20}$	g) $\frac{5}{6} + \frac{2}{4}$	h) $\frac{10}{22} - \frac{5}{11}$
i) $\frac{5}{8} \div \frac{1}{6}$ $\frac{5}{8} \bullet \frac{6}{1} = \frac{30}{8} = \frac{15}{4}$	$\mathbf{j)} \frac{1}{3} \div \frac{1}{4}$	k) $\frac{1}{2} \cdot \frac{2}{3}$	$I) \frac{3}{6} \bullet \frac{1}{2}$
m) $\frac{5}{7} \div \frac{1}{3}$	n) $\frac{3}{5} \cdot \frac{7}{10}$	o) $\frac{1}{2} \cdot \frac{5}{7}$	p) $\frac{1}{3} \div \frac{2}{6}$

<u>Part 5: Evaluating Expressions with Given Values</u> – Evaluate the expressions for the given replacement value. The first problem was done for you.

Need a refresher? Evaluating Expressions with Given Values Video:

https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-expressions-and-variables/cc-6th-evaluating-

expressions/v/variables-and-expressions-1

<u>expressions/v/variables-and-expressions-1</u>		
3a + 5b, for $a = -1$, $b = 23(-1) + 5(2)-3 + 107$	a) $4r + \frac{21}{s}$, $for r = 7$, $s = -7$	b) $-2 + \frac{6}{x} - y - 3$, for $x = 2$, $y = -6$
c) $-(g-2h) + 3$, for $g = 1$, $h = -1$	d) $6(p-q)$, for $p=9$, $q=-2$	e) $3m + n + m$, for $m = 5$, $n = 2$

Evaluating Expressions with Given Values Extra Practice:

http://cdn.kutasoftware.com/Worksheets/PreAlg/Evaluating%20Variable%20Expressions.pdf http://cdn.kutasoftware.com/Worksheets/PreAlg/Evaluating%20Variable%20Expressions.pdf

Part 6: Number Sense

Need a refresher? Number Sense Video:

https://www.khanacademy.org/math/pre-algebra/decimals-pre-alg/comparing-decimals-pre-alg/v/comparing-decimals-1-example https://www.khanacademy.org/math/pre-algebra/decimals-pre-alg/comparing-decimals-pre-alg/v/ordering-decimals-example

a)	b)	c)
4.5 > -4.5	-0.70707.07	-18.218.0
d) -3.21 3.12	e) -0.3 0.33	f) -0.060.6

Fill the place holder in with the correct inequality <, >, or =. The first problem has been done for you

Rewrite the decimals in increasing order. The first problem has been done for you.

Number Sense Extra Practice:

https://www.khanacademy.org/math/pre-algebra/decimals-pre-alg/comparing-decimals-pre-alg/v/comparing-decimals-1-example https://www.khanacademy.org/math/pre-algebra/decimals-pre-alg/comparing-decimals-pre-alg/v/ordering-decimals-example

	Property Name	Definition	Example
	Product of Powers	$a^m \cdot a^n = a^{m+n}$	$5^3 \cdot 5^{-1} = 5^{3 + (-1)} = 5^2 = 25$
	Power of a Power	$(a^m)^n = a^{mn}$	$(3^3)^2 = 3^3 \cdot 2 = 3^6 = 729$
Part 7: Properties of Exponents	Power of a Product	$(ab)^m = a^m b^m$	$(2 \cdot 3)^4 = 2^4 \cdot 3^4 = 1296$
Part 7: Properties of Exponents	Negative Exponent	$a^{-m}=\frac{1}{a^m},a\neq 0$	$7^{-2} = \frac{1}{7^2} = \frac{1}{49}$
Need a refresher on Dranouties of	Zero Exponent	$a^0=1,a\neq 0$	$(-89)^0 = 1$
Need a refresher on Properties of Exponents? Use the links below	Quotient of Powers	$\frac{a^m}{a^n}=a^{m-n}, a\neq 0$	$\frac{6^{-3}}{6^{-6}} = 6^{-3 - (-6)} = 6^3 = 216$
	Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{4}{7}\right)^2 = \frac{4^2}{7^2} = \frac{16}{49}$

https://www.khanacademy.org/math/pre-algebra/exponents-radicals/exponent-properties/v/exponent-rules-part-1

https://www.khanacademy.org/math/pre-algebra/exponents-radicals/exponent-properties/v/exponent-rules-part-2

https://www.khanacademy.org/math/pre-algebra/exponents-radicals/exponent-properties/v/exponent-properties-involvingquotients

https://www.khanacademy.org/math/pre-algebra/exponents-radicals/negative-exponents-tutorial/v/negative-exponents

Simplify the following exponents. The first problem has been done for you.				
a) $(-2)^2 = (-2)(-2) = 4$	b) $5^0 =$	c) (- 10) ⁻¹ =		
d) $(-3)^3 =$	e) $(-5)^1 =$	f) $8^{-1} =$		
g) $\frac{6z^5}{9z} = \frac{6z^{5-1}}{9} = \frac{2z^4}{3}$	h) $\frac{4b^{-6}}{2b^5k^{-4}}$	i) $2n^6y^{-3} \cdot 6n^{-2}y^2$		
$j) \frac{8h^{-5}r^{-3}}{4hr^{-4}}$	k) $\frac{9^{-5}}{9}$	I) $\frac{8^6}{8^4}$		
m) $2k^6 \cdot 7k^{-3}g^2$	n) $(\frac{6}{7})^4 \cdot (\frac{6}{7})^{-9} \cdot (\frac{6}{7})^5$	o) $d^6 \cdot d^{-2} \cdot d^{-3}$		

Properties of Exponents Extra Practice:

https://www.khanacademy.org/math/pre-algebra/exponents-radicals/exponent-properties/e/exponent_rules

https://www.khanacademy.org/math/pre-algebra/exponents-radicals/exponent-properties/e/properties-of-integer-exponents

http://cdn.kutasoftware.com/Worksheets/Alg1/Properties%20of%20Exponents.pdf

http://cdn.kutasoftware.com/Worksheets/Alg1/More%20Properties%20of%20Exponents.pdf

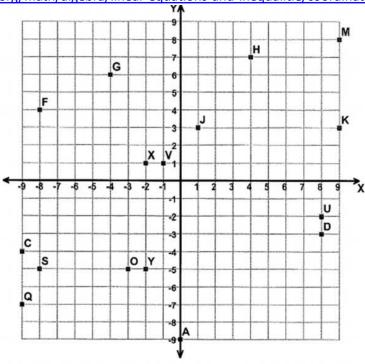
Part 8: Solving Equations with One Variable

Need a refresher? Solving Equations with One Variable Video:

 $\underline{\text{https://www.khanacademy.org/math/algebra/solving-linear-equations-and-inequalities/why-of-algebra/v/one-step-equation-intuition}$

 $\frac{\text{https://www.khanacademy.org/math/algebra/solving-linear-equations-and-inequalities/why-of-algebra/v/why-we-do-the-same-thing-to-both-sides--two-step-equations}$

thing-to-both-sidestwo-step-equations				
a) h - 15 =- 22	b) 21k =- 105	$c) \frac{g}{-12} = 11$		
One Step				
d) s + 9 = 25	e) x - 7 = 1	$f) \frac{-x}{4} = 5$		
g) - 15 - 9c = 3	$h) \frac{6-h}{22} = -16$	$i) \ 7 + \frac{2}{7}k = 20$		
Two-steps				
$j) \frac{3}{7} a - 17 = - 11$	k) 5f - 28 = -11	l) - 18 + 25y = -6		
$m)\frac{21-r}{28} = -12$	$n)\frac{7+z}{-20} = -24$	$o) \; \frac{16-n}{-18} = - \; 2$		
112	$n_{J-20} - 2\pi$	-18 — Z		


Solving Equations with One Variable Extra Practice:

http://cdn.kutasoftware.com/Worksheets/PreAlg/One-Step%20Equations%20With%20Integers.pdf

Part 9: The Coordinate Plane

Need a refresher? Watch this video:

https:/www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/coordinate-plane/v/the-coordinate-plane

Tell what point is located at each ordered pair. The first problem has been done for you.

a) (- 9, - 4) C	b) (4, 7)	c) (8, -2)	d) (8, -3)
e) (1, 3)	f) (- 3, - 5)	g) (9, 3)	h) (- 1, 1)

Write the ordered pair for each given point. The first problem has been done for you.

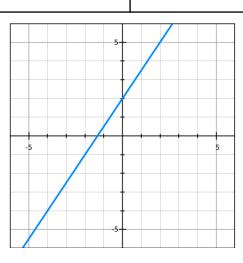
a) S (-8, -5)	b) M	c) X	d) F
e) Y	f) Q	g) G	h) A

Plot the following points on the coordinate grid

a) W(3, 5)	b) $N(-7, -2)$	c) $P(-3, 5)$	d) $B(-3, -1)$
e) T(6, 8)	f) I(0, 7)	g) E(6, -8)	h) Z(8, 3)

Need a refresher? Slope Intercept Form of Linear Equations Video:

a) $y = \frac{-1}{4}x - 2$ b) $y = \frac{1}{3}x - 1$


a)
$$y = \frac{-1}{4}x - 2$$

b)
$$y = \frac{1}{3}x - 1$$

c)
$$y = \frac{-2}{7}x + 1$$

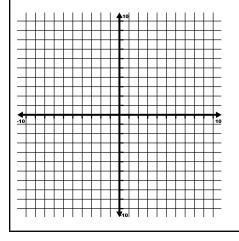
d)
$$y = \frac{3}{4}x + 3$$

e)

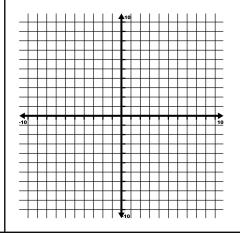
Slope: _____

Y-intercept: _____

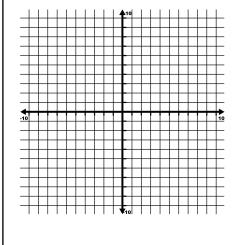
Slope: _____


Y – intercept: _____

https://www.khanacademy.org/math/algebra/linear-equations-and-inequalitie/graphing-slope-intercept/v/graphing-a-line-in-slopeintercept-form


Label the slope and y-intercept of each linear equation below:

Sketch the graph of each line.


a)
$$y = \frac{1}{3}x - 4$$

b)
$$y = \frac{-1}{3}x + 1$$

c)
$$y = \frac{-4}{9}x - 3$$

