

2024-2025

Rising 8th Grade Summer Math Packet

Directions:

- Complete all pages of the attached packet.
- Show all of your work. Try to work without a calculator.
- You can get help from friends, family, or other sources, but do not use ChatGPT or PhotoMath. It's important that you understand the work because you need to understand this math for 8th grade.

Week of July 1st	Page 1	
Week of July 8th	Page 2	
Week of July 15th	Page 3	
Week of July 22nd	Page 4	
Week of July 29th	Page 5	
Week of August 5th	Page 6	
Week of August 12th	Page 7	
Week of August 19th	Page 8	
Week of August 26th	Page 9	
September 5th: First Day of School!	Completed Packet Due	

Suggested Schedule:

 Domain: EXPRESSIONS & EQUATIONS CCRS Standards: 7 – Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Objective: Use the distributive property to generate equivalent expressions. 				
The distributive property of multiplication over addition star	tes: $a(b+c) = a \cdot b + a \cdot c$ or $a(b+c) = ab + ac$.			
The same is true for subtraction:	$a(b-c) = a \cdot b - a \cdot c$ or $a(b-c) = ab - ac$.			
Examples : 1. $-3(-2x + 5) = (-3) \cdot -2x + (-3) \cdot 5$ Distribute 3 throws = 6x - 15 Simplify	bugh the parentheses; Multiply -3 by $-2x$ & multiply -3 by 5.			
2. $4(5a - 9b) = 4 \cdot 5a - 4 \cdot 9b$ Distribute 4 thro = $20a - 36b$	ugh the parentheses; Multiply 4 by 5 <i>a</i> and multiply 4 by 9 <i>b</i> .			
1. Use the distributive property to write an equivalent expression.	2. Use the distributive property to write an equivalent expression.			
-2(n + 7)	-8(3p - 1)			
3. Use the distributive property to write an equivalent expression.	4. Use the distributive property to write an equivalent expression.			
7(–4 <i>m</i> + 5)	11(-x-5)			
5. Use the distributive property to write an equivalent expression.	6. Use the distributive property to write an equivalent expression.			
-(-3k - 4)	-6(5z + 12)			

CCRS Standards:

1

7 – Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

Objective: Combine like terms.

	Definition		lllustration on 2x + 5x – 3y + 1	
	Terms are separated by addition or subtraction.			2x, 5x, 3y, and 1 are <i>terms</i> .
	A <u>coefficient</u> is the number multip	lied by a variable in a	a term.	2, 5, and 3 are coefficients.
	Like terms have exactly the same	variable.		2 <i>x</i> and 5 <i>x</i> are <i>like terms.</i>
	A <u>constant</u> is a numerical term that **Like terms car	at does not have a va n be combined by ad	ariable. Iding or subtracting the	1 is a constant term. ir coefficients.
Exar	nples:			
1. C 5; 5; (5	. Combine like terms: $5x + x - 7y$ $5x + x - 7y =$ original problem $5x + 1x - 7y =$ When a coefficient is not visible, it is 1. (5 + 1)x - 7y = $6x - 7y$. Combine like terms (5x and 1x); $-7y$ remains unchanged.			
2. C 12 12 12 12 12 12	ombine like terms: $12r + 5 + 3r - 5$ $2r + 5 + 3r - 5$ $2r + 3r + 5 - 5$ $2r + 3)r + 5 - 5$ $5r + 0$ $= 15r$	original problem reorder terms add coefficients of like terms (12r and 3r); add constants (5 and –5) simplify		
1.)Co	ombine like terms: –2 <i>x</i> + 11 + 6 <i>x</i>		2.) Combine like term	s: 9a – 6a + 4b
3.)Co	bombine like terms: -3x + 15x - 9 + 4		4.) Combine like term	s: 6 – 7 <i>n</i> – 2 <i>n</i> – 8
5.)Co	ombine like terms: 7 <i>m</i> – 2 <i>m</i> + 4 <i>n</i> + <i>n</i>		6.) Combine like term 11	s: a + 7b – 15a – 5b

Domain: EXPRESSIONS & EQUATIONS			
 CCRS Standards: 7 – Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Objective: Expand linear expressions with the distributive property and simplify the expressions by combining like terms. 			
Examples:			
1. Distribute and simplify: $-4 + 6(-4x + 3)$ -4 + 6(-4x + 3) = original problem $-4 + 6 \cdot -4x + 6 \cdot 3 = $ distribute 6 through (- -4 -24x + 18 = multiply 6 by $-4x$, and -24x - 4 - 18 = reorder -24x - 22 combine like terms (a	simplify: $-4 + 6(-4x + 3)$ 3) = 0 original problem $6 \cdot 3 = 0$ distribute 6 through $(-4x + 3)$ 18 = 0 multiply 6 by $-4x$, and multiply 6 by 3 = 0 reorder combine like terms (add constants -4 and -18)		
2. Distribute and simplify: $-(-3n + 2) - 2n$ -(-3n + 2) - 2n original problem -1(-3n + 2) - 2n the opposite sign before the parentheses represents $-1-1 \cdot -3n + -1 \cdot 2 - 2n distribute -1 through (-3n + 2)3n -2 - 2n multiply -1 by -3n and multiply -1 \cdot 23n -2n -2$ reorder (3-2)n -2 combine like terms 1n -2 simply n-2 simplify			
1.)Combine like terms: 3(7 <i>n</i> + 6) – 5 <i>n</i>	2.) Combine like terms: –5(9x – 4) + 10		
3.)Combine like terms: 7(–2 <i>p</i> + 3) + 2 <i>p</i>	4.) Combine like terms: –2 <i>v</i> – (9 – 10 <i>v</i>)		
5.)Combine like terms: $-1 + 3(m + 4)$	6.) Combine like terms: –8(5 – 3 <i>x</i>) + 12		

 Domain: EXPRESSIONS & EQUATIONS CCRS Standards: 13 –Write, read, and evaluate expressions in which letters stand for numbers. (6th) 13c – Evaluate expressions at specific values of their variables. (6th) Objective: Evaluate an algebraic expression. A <u>variable</u> is a symbol, usually a letter, used to represent a number. Algebraic expressions are combinations of variables, numbers, and at least one operation. Multiplication in algebra can be shown as 8n or 8 × n The variables in an algebraic expression can be replaced with any number. Once the variables have been replaced, you can <u>evaluate</u>, or find the value of, the algebraic expression. 			
Example 1: Evaluate $-7x + 4y - 12$ Example 2: Evaluate $10a - ab + 3b$ if $x = -6$ and $y = -1$ if $a = \frac{1}{5}$ and $b = 15$			
$-7x + 4y - 12$ original problem $-7 \cdot -6 + 4 \cdot -1 - 12$ replace x with -6 and y with -1 42 -4 -12 38 -12 simplify 26 simplify1.)Evaluate $12a + 3b$ if $a = -1$ and $b = -7$	10a - ab + 3b original problem 10 $\cdot \frac{1}{5} - \frac{1}{5} \cdot 15 + 3 \cdot 15$ replace a with $\frac{1}{5}$ and b with 15 2 -3 + 45 multiply 10 by $\frac{1}{5}$ and $\frac{1}{5}$ by 15 -1 + 45 simplify 44 simplify 2.) Evaluate $-12g + 5h$ if $g = \frac{1}{3}$ and $h = -2$		
3.) Evaluate $30 - xy + 2$ if $x = 7$ and $y = 3$	4.) Evaluate $xy + 7 - y$ if $x = -2$ and $y = -6$		
5.) Evaluate $np + n - p$ if $n = 4$ and $p = -5$	6.) Evaluate $24r - 3s + 6$ if $r = -\frac{1}{4}$ and $s = 5$		

Domain: EXPRESSIONS & EQUATIONS CCRS Standards: 12 – Write and evaluate numerical expressions involving whole-number exponents. (6 th) 13c – Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). (6 th) Objective: Evaluate numeric expressions using order of operations.			
Example 1: Evaluate 3 • 2 ³ –	· 25 ÷ 5	Example 2: Evaluate (12 – 9) • (15 –3 ³) + 4 ²
$3 \cdot 2^{3} - 25 \div 5$ $3 \cdot 8 - 25 \div 5$ $24 - 25 \div 5$ 24 - 5 67	original expression calculate 2 ³ multiply 3 by 8 divide 25 by 5 subtract 5 from 24	$(12 - 9) \cdot (15 - 3^3) + 4^2$ (12 - 9) \cdot (15 - 27) + 16 3 \cdot -12 + 16 -36 + 16 -20	original expression calculate 3 ³ and 4 ² simply parentheses multiply 3 by –12 simplify
1.) 12 • 4 – 72 ÷ 9		2.) 64 – 4 • 2 ³ + 7	
3.) 9 • 4 – 3 ² + 5 • 2		4.) (72 − 16) ÷ (13 −6) • 2 ³	
5.) 45 ÷ 9 – 3 + 7 • 3		6.) (28 – 10 ²) ÷ 2 ³	

CCRS Standards:

10 – Use variables to represent quantities in real-world or mathematical problems, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

10a - Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

Objective: Solve two-step equations.

Example 1: 5m + 2 = -13 original equation $\frac{-2}{5m + 0} = -15$ add -2 to both sides $\frac{5m}{5} = \frac{-15}{5}$ solution $\frac{5m}{5} = \frac{-15}{5}$ divide both sides by 5 1m = -3 solution m = -3 simplify	Check Solution: $5m + 2 = -13$ original equation $5 \cdot -3 + 2 = -13$ replace m with -3 $-15 + 2 = -13$ simplify $-13 = -13$ simplify
Example 2: -7.8x - 5.4 = -78.408 original equation $\frac{+5.4 + 5.4}{-7.8x + 0} = -73.008$ solution $\frac{-7.8x}{-7.8} = -\frac{73.008}{-7.8}$ simplify -7.8 - 7.8 divide both sides by -7.8 $1 \cdot x = 9.36$ solution x = 9.36	Check Solution: $-7.8x - 5.4$ = -78.408 original equation $-7.8 \cdot (9.36) - 5.4$ = -78.408 replace x with 9.36 $-73.008 - 5.4$ = -78.408 simplify -78.408 = -78.408 simplify
1.) Solve and check.	2.) Solve and check.
2k + 5 = 29	-11x - 7 = 26
3.) Solve and check.	4.) Solve and check.
9x - 7 = -7	-3y + 8.25 = 24
5.) Solve and check.	6.) Solve and check.
-5n + 2.75 = -28.75	2.43y – 1.21= –10.94

Domain: EXPRESSIONS & EQUATIONS

CCRS Standards: 10 – Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

10a - Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

Objective: Solve two-step equations with rational numbers.

Example 1: $\frac{n-10}{2} = -6$ $2 \cdot \frac{n-10}{2} = -6 \cdot 2$ $1(n-10) = -12$ $n-10 = -12$ $\frac{+10}{n+0} = -2$ $n = -2$	original equation Multiply both sides by the denominator, 2 Simplify Simplify: $1(n - 10) = n - 10$ Add 10 to each side. Solution Simplify: $n + 0 = -2$	Check Solution $\frac{\frac{n-10}{2} = -6}{\frac{-2-10}{2} = -6}$ $\frac{\frac{-12}{2} = -6}{-6 = -6}$	original equation Replace <i>n</i> with –2. Simplify numerator. Simplify
Example 2: $\frac{m}{9} - 1 = -$ $9\left(\frac{m}{9} - 1\right) = 9$ $9 \cdot \frac{m}{9} + -9 \cdot 1 = 9$ $m - 9 = -$ $+9$ $m + 0 = -$ $m = -$	 -2 original equation (-2)Multiply both sides by the deno -2 Distribute 9 on the left side. 18 Simplify 9 Add 9 to both sides. 9 Solution 9 Simplify 	Check Solution $\frac{m}{9} - 1 = -2$ pominator, 9. $\frac{-9}{9} - 1 = -2$ -1 - 1 = -2 -2 = -2	original equation Replace <i>m</i> with –9 Simplify Simplify
1.) Solve and check.	$\frac{v-9}{3} = -8$	2.) Solve and check.	$\frac{a+5}{-16} = -1$
3.) Solve and check.	$\frac{a}{4} + 2 = -6$	4.) Solve and check. $\frac{x}{2}$	$\frac{2}{0} - 5 = -4$

CCRS Standards:

10 – Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

Objective: Write an algebraic expression to represent unknown quantities.

The tables below show phrases written as mathematical expressions.

Phrases	Expression
12 more than a number, <i>x</i>	
the sum of 12 and a number, x	
a number, <i>x</i> , plus 12	x + 12
a number, x, increased by 12	
the total of x and 12	
Phrases	Expression
3 multiplied by g	
3 times a number, <i>g</i>	3a
the product of g and 3	J

Phrases	Expression
2 less than a number, <i>n</i>	
a number, <i>n</i> , minus 2	
2 subtracted from number, n	n – 2
a number, <i>n</i> , decreased by 4	
the difference of <i>n</i> and 2	
Phrases	Expression
a number divided by 5	m
the quotient of <i>m</i> and 5	_
divide a number by 5	5

1.)	18 less than <i>p</i>	2.)	the quotient of a number, <i>n</i> , and 9
3.)	18 years older than Jordan	4.)	5 times as many hits as Paul
5.)	Let t = the number of tomatoes Tara planted last year. This year, she planted 3 times as many. Write an algebraic expression to show how many tomatoes Tara planted this year.	6.)	Last week, Jack sold x number of hot dogs at the football game. This week he sold twice as many as last week, and then he sold 10 more. Write an expression to show how many hot dogs Jack sold this week.

CCRS Standards:

10 – Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

10a – Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

Objective: Write linear equations.

The table below shows sentences written as an equation.

Sentences		Equation]
Seventy less than 5 times a number is 25. Five times the amount decreased by 70 is equal to 25. 25 is equal to the difference of 5 times a number and 70. The product of 5 and a number less 70 equals 25.		5n – 70 = 25	
1.) Write an equation for the problem. Do not solve.	2.) Write ar	n equation for the problem. Do not so	ve.
4 less than 3 times a number is 14.	There are 5 people in Johnny's rock band. They made x dollars playing at a dance hall. After dividing the money 5 ways, each person got \$67. Write a division equation that you could use to find the amount of money the band was paid.		
3.) Write an equation for the problem. Do not solve.	4.) Write an equation for the problem. Do not solve.		
Twice the sum of a number and 7 is equal to 44.	The lifespan of a zebra is 15 years. The lifespan of a blac bear is 3 years longer than the lifespan of a zebra. Write a addition equation that you could use to find the lifespan of bear.		of a black a. Write an fespan of a
5.) Write an equation for the problem. Do not solve.	6.) Write ar	n equation for the problem. Do not so	ve.
A gardening expert recommends that flower bulbs be planted to a depth of three times their height. Suppose Jenna determines that a certain bulb should be planted at a depth of 4.5 inches. Write an equation to find the height of the bulb.	The of e finc the \$45	e electric company charges \$0.06 per kill electricity used. Write a multiplication equ t the number of kilowatt hours of electrici Estevez family was charged if their elec 5.84.	owatt hour uation to ty for which tric bill was